Electrical Machines-II Lab

Course Code	19EE3551	Year	III	Semester	I
Course Category	Professional Core	Branch	EEE	Course Type	Lab
Credits	1.5	L-T-P	0-0-3	Prerequisite	Electrical Machines-I Lab (19EE3451) and Basic Electrical and Electronics Engineering Lab (19ES1151)
Continuous Internal Evaluation:	25	Semester End Evaluation:	50	Total Marks:	75

	Course Outcomes					
Upon s	Upon successful completion of the course, the student will be able to					
CO1	Understand the performance of three phase and single phase induction motor. (L2)					
CO2	Analyze the performance of the alternator and predetermine the regulation. (L4)					
CO3	Classify the 'V' & ' \Lambda ' curves of synchronous motor (L3)					
CO4	Obtain the synchronous machine parameters and understand the performance of special machines such as three phase schrage motor (L3)					

Contribution of Course Outcomes towards achievement of Program Outcomes & Strength of correlations (3: High, 2: Medium, 1: Low)

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	3		2			1			2			2	3	2
CO2	3		2			1			2			2	3	2
CO3	3		2			1			2			2	3	2
CO4	3		2			1			2			2	3	2

	Syllabus					
Unit No.	0.0000000000000000000000000000000000000	Mapped CO				
1.	Brake test on three phase Induction Motor	CO1				
2.	No-load & Blocked rotor tests on three phase squirrel cage induction motor	CO1				
3.	Equivalent circuit of a three phase induction motor and measurement of slip power.	CO1				
4.	Equivalent circuit of a single phase induction motor	CO1				
5.	Brake test on single phase induction motor	CO1				
6.	Regulation of a three-phase alternator by synchronous impedance method	CO2				
7.	Regulation of a three-phase alternator by mmf method.	CO2				
8.	Regulation of a three-phase alternator by Z.P.F. method	CO2				
9.	Measurement of sequence impedance of a three-phase alternator	CO2				
10.	'V'&'Λ' curves of a three-phase synchronous motor.	CO3				
11.	Determination of Xd and Xq of a salient pole synchronous machine	CO4				

12. Brake test on three phase Schrage motor.	CO4					
13. Determination of performance of induction generator	CO1					
Learning Resources						
Text Books						
1. Dr.P. S Bimbhra-Electrical Machinery-7/e -Khanna Publishers,2018.						
2. I.J. Nagarath and D.P. Kothari, —Electric Machines, 4/e, McGraw Hill,2010.						
2 APP' 11 CL 1 IV' 1 I CL 1 DIL PLA' MIL						

- 3. A.E. Fitzgerald, Charles Kingsley Jr. Stephen D. Umans, -Electric Machinery 7/e, McGraw, Hill., 2013